如何求解一般情况的麦克斯韦方程组?《张朝阳的物理课》求解动态情况的电磁势

来源:蓝鲸财经 作者:蓝鲸财经 2022-09-06 15:45:29
关注证券之星官方微博:

(原标题:如何求解一般情况的麦克斯韦方程组?《张朝阳的物理课》求解动态情况的电磁势)

如何求解一般情况下的麦克斯韦方程组?将电磁场表示为电磁势有何意义?9月4日12时,《张朝阳的物理课》第八十二期开播,搜狐创始人、董事局主席兼CEO张朝阳坐镇搜狐视频直播间,先带着网友讨论了将电磁场表示为电磁势的意义,并利用简易的解方程技巧以及散度定理求解出静电荷产生的静电势。随后开始讨论一般情况,在洛伦兹规范下将麦克斯韦方程组用电磁势表示出来,发现电势与磁矢势满足的方程的形式相同,通过类似静电势的求解方法解出了电磁势关于电荷电流密度的表达式。

张朝阳将电磁理论分为三层楼,第一楼是电势与磁矢势,第二楼是电磁场,是由第一层楼进行时空偏导得到,而第三楼的物理量则是第二楼的进行时空偏导得到。第二楼的电磁场是实际的可观测量,第三楼对应的是更具体综合的物理量。而第一楼的电磁势虽然目前没有物理意义,但一楼的物理量不仅数量少,而且它们还可以导出二楼与三楼的物理量,由它们来构建理论体系还具有很多优势,所以接下来需要研究麦克斯韦方程组在一楼的表达。

上节课张朝阳已经求解出静态的磁矢势关于电流密度的表达式,这节课求解电势关于电荷密度的表达式。张朝阳先解电荷集中在原点处的情况,这时电荷密度用狄拉克函数描述。在非原点处,电势就是简单的拉普拉斯方程,利用球坐标系解得电势与原点距离成反比。为了进一步求得比例系数,对方程两边同时进行球体积分,利用散度定理可以求得电势项的积分,利用狄拉克函数性质可以求得电荷密度的积分,最终计算得出比例系数。

随后张朝阳开始考虑一般情况下的麦克斯韦方程组的求解。首先利用麦克斯韦方程组的两个方程定义出了一般情况下的电势和磁矢势,紧接着将麦克斯韦方程组中另外两个方程用电磁势表示出来,使用洛伦兹规范使得方程具有对称简洁易解的形式。之后开始求解原点处随时间变化的点电荷产生的电势,这样在非原点处方程化为波动方程。

为了进一步求得波动函数,使用与静态情况类似的方法,对电势方程进行球体积分,但球体体积趋于零,于是电势的时间偏导项没有贡献,运用散度定理与狄拉克函数性质求得波动函数与电荷函数的关系。再利用叠加原理求得一般电势方程的解。由于磁矢势方程与电势方程形式相同,可类比电势的表达式得到磁矢势方程的解,最终电磁势用电荷电流密度表达出来,电磁场也可通过电磁势求得。

截至目前,《张朝阳的物理课》已直播八十余期,内容丰富、覆盖广泛,理论公式由浅入深、繁简交融。从去年11月开启第一节物理直播课,他先是从经典物理学开始,科普了牛顿运动定律等;而后从经典物理的“两朵乌云”说起,向近现代物理过渡,探讨了黑体辐射理论中的维恩公式、普朗克公式等知识。

此后逐步进入量子力学领域,从基础的薛定谔方程等理论内容,到氢原子波函数,再到气体定容比热的温度阶梯,并顺势讲解了热力学定律。接着回到了经典物理,推导出飞船运行轨迹,估算太阳的结构与性质以及中子星的自转速度,随后讲解了陀螺的进动,还计算出月球的潮汐高度。而现在开始讲解一些数学工具,准备进军广义相对论。

《张朝阳的物理课》的直播风格独树一帜:注重推导,通过一步一步详尽的数学计算,推导出相关的物理公式,把每个公式从头到尾拆解得十分清晰。

据了解,《张朝阳的物理课》于每周周五、周日中午12时在搜狐视频直播,网友可以在搜狐视频“关注流”中搜索“张朝阳”,观看直播及往期完整视频回放;关注“张朝阳的物理课”账号,查看课程中的“知识点”短视频;此外,还可以在搜狐新闻APP的“搜狐科技”账号上,阅览每期物理课程的详细文章。

除了《张朝阳的物理课》外,在直播方面,搜狐视频正持续打造知识直播平台,邀请各个科学领域的头部播主入驻,进行科普知识直播。包括中国运载火箭技术研究院专家钱航,直播讲述航空航天事业发展史;北京交通大学理学院教师陈征博士线上开课——“奇趣的科学实验”;中国科学院基因组学博士、元码基因创始人田埂讲解基因组学与生活的紧密联系;天体物理博士刘博洋科普“日全食是怎么产生的”等。未来还将有更多知识播主入驻搜狐视频,一起互动玩转科学。

微信
扫描二维码
关注
证券之星微信
APP下载
下载证券之星
郑重声明:以上内容与证券之星立场无关。证券之星发布此内容的目的在于传播更多信息,证券之星对其观点、判断保持中立,不保证该内容(包括但不限于文字、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关内容不对各位读者构成任何投资建议,据此操作,风险自担。股市有风险,投资需谨慎。如对该内容存在异议,或发现违法及不良信息,请发送邮件至jubao@stockstar.com,我们将安排核实处理。
网站导航 | 公司简介 | 法律声明 | 诚聘英才 | 征稿启事 | 联系我们 | 广告服务 | 举报专区
欢迎访问证券之星!请点此与我们联系 版权所有: Copyright © 1996-